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Abstract 

In this paper we estimate the impact of axle loads on rail infrastructure maintenance costs in 

Sweden. The results are contrasted to the cost impact of ton density, a common measure in the 

literature on rail infrastructure costs. We find non-linear cost elasticities with respect to a ton 

per axle density measure, with an estimate at the sample median that is larger than the 

corresponding estimate for ton density. The results are relevant for the setting of track access 

charges in Europe, considering that the econometric results in this paper give support to the 

engineering perspective - that is, axle loads are important to consider when estimating the 

damage caused by traffic. 

 

1.0 Introduction 

The vertical separation between train operations and infrastructure management in Europe 

during the 1990s made an introduction of track access charges necessary.1 The charging 

principles, as set forth in 2001 by EU legislation (Dir. 2001/14), states that these charges 

should be set according to the direct cost of running a vehicle on the rail infrastructure. An 

important part of these charges concerns the wear and tear of the infrastructure, which will 

differ depending on the characteristics of the vehicle running on the tracks (as well as on the 

characteristics of the tracks). Differentiating the charge with respect to the vehicles’ effect on 

the wear and tear can establish an efficient use of the infrastructure. 

                                                           
1 The Swedish reform took place in 1988, preceding the wider European reform. 
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An important characteristic of the vehicle in this context is the axle load. Its effect on 

wear and tear became more apparent as the demand for improved efficiency in railway 

transportation required increased axle loads. Research was necessary in order to predict its 

effects and test whether an increased axle load was economically feasible or not. A source of 

knowledge on this matter are the studies in the Heavy Axle Load (HAL) Research Program, 

initiated in 1988 in the U.S., in which predictions on the cost impacts were made using 

engineering models for different components and bridges. The actual costs were however 

much lower than expected, partly due to better technology and maintenance management 

(Martland 2013). The International Union of Railways (UIC) also made a series of studies 

during the 1980s on increased axle loads, generating results that are utilized in for example 

Öberg et al. (2007).  More specifically, the calculations in Öberg et al. show that an increase 

in the axle load from 16 to 22 tons will cause a 60 per cent increase in costs per ton-km. 

However, their approach relies on an assessment by experts within the Swedish Rail 

Administration; an assessment of the shares of maintenance and renewal costs that each 

deterioration mechanism has caused. This assessment may or may not be close to the actual 

cost shares of the different mechanisms, and the calculated cost impact from an increased axle 

load is therefore uncertain. 

Both of the above-mentioned cases are so called bottom-up approaches, which are 

based on engineering models. In general, this type of approach predicts the damages caused 

by traffic and then links it to the cost of rectifying these damages, which requires assumptions 

on the amount of maintenance (and renewal) activities performed and their respective costs. 

Again, these assumptions may, or may not, generate predictions that are close to the actual 

costs caused by an increase in axle loads. There is thus reason to study the direct relationship 

between axle load and actual costs, which is the purpose of this paper. 
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A top-down (econometric) approach is used to estimate the cost elasticity of axle 

loads. More specifically, we estimate the cost impact of axle loads on rail infrastructure 

maintenance in Sweden using a panel dataset over the period 2011-2014. This may contribute 

to the knowledge of how different axle loads affect maintenance costs, and can be useful 

when setting track access charges for the wear and tear costs of the rail infrastructure. 

Studies on the direct relationship between axle loads and maintenance costs are 

scarce. Nevertheless, according to Jansson (2002), the studies that have tried to establish 

estimates have found an almost linear or slightly increasing relationship.2 The relationship 

between ton density and costs is for example analyzed in Johansson and Nilsson (2004), 

Andersson (2008), Wheat and Smith (2008), Gaudry and Quinet (2009), and Wheat et al. 

(2009). Still, these studies do not use (have access to) information on the axle loads of each 

train and therefore use a ton density measure; a measure that may hide information that is 

important for the wear and tear of the rail infrastructure and, hence, the maintenance costs. 

For example, a ton density measure does not reflect an increase in axle loads when a train 

operator moves a certain number of tons with one train instead of two trains (or one wagon 

instead of two wagons). Using this measure to estimate the cost impact of infrastructure usage 

may therefore produce biased results. For that reason, we make a comparison between a total 

ton measure and an axle load measure in this context, using econometric techniques. 

The paper is organized as follows. Section 2 describes the estimation approaches and 

aspects that are important for estimating the cost impact of axle loads. The models we 

estimate are presented in section 3. Section 4 contains a description of our data. The 

estimation results are presented in section 5, while section 6 concludes. 

 

  

                                                           
2 It is however not clear which studies Jansson (2002) is referring to.  



4 
 

2.0 Estimation approaches 

We consider two estimation approaches to measure the cost impact of increased axle loads. In 

the first approach, we wish to estimate the cost impact of different axle load intervals. In the 

second approach, we consider a measure that includes the effect of increased axle loads. 

The measures in the first approach (and its complications) is best described using a 

made up example of two identical track sections - that is, identical characteristics and 

production environments such as the same annual (and accumulated) tonnage. However, there 

is one aspect that differs: a large share of section A’s annual tonnage consists of trains with 

high axle loads, while the other section’s (B) annual tonnage comprises more trains (and/or 

possibly more wagons per train). Track section B therefore has a larger share of its total ton 

density comprised by low axle loads. This is illustrated in Table 1 below.  

One hypothesis is that section A will experience more wear and tear, which implies 

that the cost elasticity increases with ton per axle:  𝛽1 < 𝛽2 < 𝛽3. That is, a proportional 

increase in ton density within the axle load interval 16 to 25 tons is expected to cause a higher 

proportional increase in maintenance costs compared to a corresponding proportional increase 

in ton density within the axle load interval 10 to 15 tons. 

 

Table 1 – Axle load differences 

Axle load interval, tons Ton density* section A Ton density* section B Cost elasticity 

1-9 100 000 1 500 000 𝛽1 

10-15 1 100 000 1 000 000 𝛽2 

16-25 2 500 000 1 200 000 𝛽3 

Total ton density 3 700 000 3 700 000  

*Ton density = ton-km/route-km 

 

On the other hand, the maintenance cost is not necessarily higher on section A compared to 

section B. One reason is that a high train density - creating the difference in axle loads 
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between section A and B - implies shorter available time slots for maintenance and/or more 

maintenance during night-time, which is costly. To examine if this is the case in our dataset 

we calculate correlation coefficients for ton densities with respect to axle load intervals and 

train density. The correlation coefficients are estimated on traffic data during the period 2011-

2014, which contains information on ton-km and the number of axles of each train. We have 

707 observations in total. A further description of the data is provided in section 4.  

The results are  presented in Figure 1 below, which shows that the axle load intervals 

9 to 11, 11 to 13, 13 to 15 and 15 to 17 is more correlated with train density compared to 

higher axle load intervals. These differences are statistically significant. For example, the 

difference between the correlation coefficients for the intervals 17 to 19 and 19 to 21 is 

statistically significant (z-score = 6.56, p-value = 0.000), where we use the method by Steiger 

(1980) to compare correlation coefficients. A table of z-scores for the differences between the 

correlation coefficients is presented in appendix. 

 

 

Figure 1 – Correlation coefficients for the sum of tons with respect to axle load intervals 

and train density in Sweden 2011-2014 
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Connecting the relationship illustrated in Figure 1 to track sections A and B in Table 1, it 

implies that section B will have a higher train density compared to section A.3 This means that 

section A is costly to maintain due to high wear and tear from the axle loads, while section B 

will be costly to maintain due to its high train density. It may therefore be important to control 

for train density in order to identify the effect of different intervals of tons per axle. 

The measure we consider in our second estimation approach is the sum of the trains’ 

average tons per axle on each track section and year. Considering that all trains do not use the 

entire track section, we use a density measure.  

 

∑
𝑇𝐾𝑀𝑗𝑖𝑡

𝐴𝑋𝐿𝐸𝑆𝑗𝑖𝑡

𝐽
𝑗=1

𝑅𝐿𝑖𝑡
       (1) 

 

where 𝑗 = 1,2 … , 𝐽 number of trains, 𝑖 = 𝑡𝑟𝑎𝑐𝑘 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 and 𝑡 = 𝑦𝑒𝑎𝑟. 𝑇𝐾𝑀 is ton-km and 

𝑅𝐿 is route length in kilometers. This measure has an advantage over using tons for different 

intervals of axle loads as it requires fewer parameters to be estimated, which increases the 

efficiency of the estimator.  

The two measures in our estimation approach reflect an increase in axle loads which is 

not revealed by a ton density measure; the most common traffic measure in the literature on 

rail infrastructure wear and tear costs.4 For example, the axle load measures reflect the 

difference between two trains with the same total weight but with different number of axles. 

However, the measure in equation (1) does not reflect the difference between two trains with 

the same weight per axle but with a difference in total weight.  

                                                           
3 However, this will not be the case if the trains on section B have a lot of wagons (hence, many axles) that 

carries a similar amount of tons as the shorter trains on section A. 

4 The measure for ton density is 
∑ 𝑇𝐾𝑀𝑗𝑖𝑡

𝐽
𝑗=1

𝑅𝐿𝑖𝑡
. 
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 To provide further intuition for the ton per axle density measure and its advantages 

(including its possible disadvantage with respect to total tons running on a section), we 

consider a train operator who runs one train between a certain origin and destination, but 

wishes to increase its shipment. The operator can do this by either a) increasing the load of 

each wagon; or b) use more wagons; or c) run two trains. An example of the options and the 

effects on the different traffic measures is shown in Table 2. The axle per ton density makes a 

distinction between options a) and b), indicating 20 and 10 tons per axle respectively, while 

the ton density measure increases with the same amount in both cases. Train density is 

unchanged in this case. Option c) is reflected by all of the three traffic measures.5 

 

Table 2 – Comparison between measures of traffic 

    

Measures of traffic 

 

Weight, tons No. of axles No. of trains 

Ton per axle  

density (eq. 1) Ton density Train density 

Starting 

Point 500 50 1 10 500 1 

       

Options 

      A 1000 50 1 20 1000 1 

B 1000 100 1 10 1000 1 

C 1000 100 2 20 1000 2 

 

In order to take the total number of tons into account when option b) is chosen, we also need 

to consider the total ton density measure when estimating the effect of axle loads using the ton 

per axle density measure. Moreover, relating the ton per axle density measure to Figure 1, we 

note that it includes the effect of more trains running on a section. Hence, we cannot use this 

measure to identify the effect of increased axle loads. Rather, it is used to include the effect of 

increased axle loads, which the ton density measure is unable to do. 

                                                           
5 Note that the ton per axle density is the sum of the trains’ tons per axle, as specified in equation (1). 
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It should be noted that the axle load intervals and the measure in equation (1) do not 

per se treat an individual ton on a wagon with a total axle load at 25 tons differently from a 

ton on a wagon with a total axle load at 10 tons. The reason is that we do not have access to 

information on the weight of each wagon in the train set.6 

Another aspect that may affect the estimation results is the differences in 

characteristics of the vehicles that contribute to wear and tear of the infrastructure, such as 

boogie type. Unfortunately, we do not have access to this information in this study.  

A difference in network characteristics is yet another aspect that can be important to 

control for in the estimations. For example, increased axle loads require changes in the 

infrastructure to make it more resilient towards the deterioration caused by the higher forces 

from the vehicles. Investments in the rail infrastructure have been made on different parts of 

the railway network in Sweden, where the infrastructure manager (IM) is gradually increasing 

the maximum axle load allowed to 25 tons. Some parts of the network are designed for 30 

tons per axle. These differences imply that the proportional increase in maintenance costs 

from a proportional increase in axle load on a train will be different depending on the 

maximum axle load allowed – that is, the cost elasticities will differ. Hence, controlling for 

this network characteristic is also important for identifying the effect axle loads has on 

maintenance costs.  

Apart from the variables mentioned above, we use a number of control variables 

which we describe in the following two sections together with a presentation of the model we 

estimate. 

 

  

                                                           
6 For example, two wagons with 25 and 10 tons per axle, respectively, have the same total ton per axle as two 

wagons with 24 and 11 tons per axle. However, the latter set of wagons is (slightly) better than the former from a 

wear and tear perspective as the eleventh ton per axle is less damaging than the 25th ton per axle. 
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3.0 Model 

To estimate the effect of axle loads in our econometric (top-down) approach, we use a cost 

function given by equation (2), with 𝑖 = 1,2 … . , 𝑁 track sections observed over 𝑡 =

1, 2, 3, 4 years.  

 

𝐶𝑖𝑡 = 𝑓(𝑿𝑖𝑡, 𝑸𝑖𝑡, 𝒁𝑖𝑡),          (2) 

 

𝐶𝑖𝑡 is maintenance costs, 𝑿𝑖𝑡 is a vector of variables for infrastructure characteristics such as 

track length, rail age and maximum axle load allowed on the tracks. 𝑸𝑖𝑡 is a vector of traffic 

variables including ton density for different axle load intervals, tons per axle density, total ton 

density, and train density. 𝒁𝑖𝑡 is a vector of dummy variables for the five maintenance regions 

in Sweden (region East, West, South, North and Central) as well as year dummy variables to 

capture general effects over the rail network such as variations in input prices (however, we 

have access to the gross hourly wage for “building frame and related trade workers”, which 

varies between different regions in Sweden as well as over time). 

With access to panel data over the period 2011-2014, we are able to model 

unobserved track section specific (time-invariant) effects. If these effects are uncorrelated 

with the independent variables, we can use the random effects model. The parameter 

estimates will be biased if this assumption is not valid. The (less efficient) fixed effects model 

does not require this assumption to generate unbiased estimates. However, it relies on 

variation within groups (track sections) and is unable to produce (efficient) estimates of 

variables if their variation is time-invariant (low). 

We use a double-log specification - that is, the dependent and independent variables 

are log-transformed - which is a useful transformation of data if the estimated residuals are 
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skewed and/or we have problems with heteroscedasticity. We consider the following (Cobb-

Douglas) model: 

 

𝑙𝑛𝐶𝑖𝑡 = 𝛼 + ∑ 𝛽𝑟𝑙𝑛𝑋𝑟𝑖𝑡
𝑅
𝑟=1 + ∑ 𝛽𝑘𝑙𝑛𝑄𝑘𝑖𝑡

𝐾
𝑘=1 +  ∑ 𝛽𝑚𝑍𝑚𝑖𝑡

𝑀
𝑚=1 + 𝜇𝑖 + 𝑣𝑖𝑡,   (3) 

 

where 𝛼 is a scalar, 𝜇𝑖 is the unobserved track section specific effects and 𝑣𝑖𝑡  is the error term.  

𝛽𝑟, 𝛽𝑘 and 𝛽𝑚 are parameters to be estimated for the 𝑅 number of explanatory variables, 𝐾 

traffic variables and 𝑀 dummy variables. 

 We also consider a Translog model, which is a second order approximation of a cost 

(production) function (see Christensen et al. 1971 and Christensen and Greene 1976). The 

Cobb-Douglas is nested in the Translog model, where the latter is more flexible and put few 

restrictions on the elasticities of production. For example, we allow for non-linear cost 

elasticities. Moreover, we consider cubic terms for the traffic variables in order to allow for 

turning points, such as the U-shaped curve that can indicate costs that decreases with output 

up to a certain point, and then increases with high enough output levels (diseconomies of 

scale). 

 

4.0 Data 

The rail network in Sweden is divided into five regional units, each administering a number of 

track sections for which we have data on costs, traffic and rail network characteristics. These 

regional units are called Region North, West, East, South and Central, for which we use 

dummy variables to capture management effects (as well as other regional effects that 

otherwise would end up as unobserved heterogeneity in the model estimation). Furthermore, it 

may be important to control for effects due to competitive tendering of maintenance 

production. Odolinski and Smith (2016) found an 11 per cent decrease in maintenance costs, 
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using a dataset over the period 1999-2011. The reform was introduced in 2002, but has been 

gradual. This implies that there are a number of track sections during the period of our dataset 

that were not tendered in competition, and we therefore include a set of dummy variables to 

capture the effect of competitive tendering. 

Information on maintenance costs has been retrieved from the Swedish Transport 

Administration, and includes costs from activities performed to maintain the assets of the 

railway network. These costs may vary depending on the technical aspects of the rail 

infrastructure. For example, the maximum axle load allowed can be an important 

characteristic to control for in order to isolate the cost impact of axle loads cost. We also have 

information on the average rail age, which can be a proxy for track standard due to the 

accumulated use of the tracks. Furthermore, we have information on the average quality class 

on a section which indicates the maximum speed allowed. 

Descriptive statistics of the available data used in this study is presented in Table 3 

and Table 4, where the latter covers the traffic variables. These observations are at the track 

section level during years 2011 to 2014. In total, we have access to 707 observations. 

Depending on the traffic variables we use in the model estimation, we lose a set of 

observations due to the log transformation as there are sections with zero values for certain 

axle load intervals during a year. 
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Table 3 – Costs, rail network characteristics and dummy variables, 2011-2014 (707 obs.) 

 

Median Mean St.dev Min Max 

Maintenance costs, million SEK* 10.67 15.93 18.93 0.05 209.22 

Hourly wage, SEK* 169.57 168.95 7.34 154.31 187.44 

Route length, km 41.00 53.76 40.48 1.79 219.39 

Track length, km 57.42 71.20 51.05 4.52 251.67 

Average rail age 21.12 22.17 9.74 2.30 53.15 

Average quality class (1 to 6)** (Qual_ave) 3.00 2.99 1.16 1.00 6.00 

Switches, km 1.27 1.72 1.65 0.06 13.60 

Length of structures (tunnels and bridges), km (structures_length) 0.42 1.59 3.63 0.01 22.08 

Max.axle load allowed, tons 22.50 23.29 1.86 16.00 30.00 

Year11 0 0.26 0.44 0 1 

Year12 0 0.25 0.43 0 1 

Year13 0 0.25 0.44 0 1 

Year14 0 0.24 0.43 0 1 

Region West 0 0.19 0.39 0 1 

Region North 0 0.14 0.35 0 1 

Region Central 0 0.18 0.38 0 1 

Region South 0 0.26 0.44 0 1 

Region East 0 0.24 0.43 0 1 

Dummy for sections tendered in competition (CtendInd) 1 0.96 0.20 0 1 

Dummy when tendered in competition (Ctend) 1 0.94 0.24 0 1 

Dummy when mix between tendered and not tendered (Mixtend) 1 0.03 0.17 0 1 

* 2014 prices, ** Track quality class ranges from 0-5 (from low to high line speed), but 1 has been added to 

avoid observations with value 0. 

 

There are differences in tons per axle between different wagons on a train. We do not have 

access to this information. Instead we are left with the average ton per axle for each train. This 

information is used to create ton density variables for different axle load intervals as well as a 

ton per axle density variable. The intervals presented in Table 4 cover about two tons per axle 

each, apart from the first and last interval (1 to 5 and 25 and more tons respectively). 
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Table 4 – Traffic variables, 2011-2014 (707 obs.)* 

 

Median Mean St.dev Min Max 

Train density 11.19 19.01 24.04 0.01 190.45 

Ton density 4 405.02 7 866.47 9 173.37 0.42 65 793.97 

Ton per axle density 177.95 300.71 398.60 0.06 5 304.19 

Ton density [0, 5) 0.03 0.97 5.88 0.00 67.45 

Ton density [5, 7) 27.40 180.12 505.60 0.00 5 374.56 

Ton density [7, 9) 113.73 246.31 297.19 0.00 1 757.44 

Ton density [9, 11) 204.26 501.92 669.50 0.00 4 616.28 

Ton density [11, 13) 585.57 1 512.02 2 254.08 0.00 13 887.76 

Ton density [13, 15) 880.21 2 522.59 5 328.65 0.00 47 310.77 

Ton density [15, 17) 312.29 792.89 1 312.27 0.00 9 857.22 

Ton density [17, 19) 127.55 336.66 527.39 0.00 3 896.97 

Ton density [19, 21) 117.47 276.38 344.27 0.00 2 431.16 

Ton density [21, 23) 73.31 395.62 614.78 0.00 2 765.98 

Ton density [23, 25) 1.11 84.37 192.96 0.00 1 269.61 

Ton density [25, ) 292.79 1 016.61 2 650.90 0.00 30 947.37 

* The units of the traffic variables are expressed in thousands 

 

5.0 Results 

Three models are estimated. In the first model, we use all the axle load intervals available 

(Model 1a) and also test the inclusion of train density (Model 1b). The number of 

observations is 299 in Model 1 due to the zero values for the different traffic variables which 

are dropped when we use a log transformation of the data. The results are presented in 

appendix. To reduce the number of dropped observations, as well as reduce the number of 

parameters to be estimated, we create larger axle load intervals for the traffic variables in 

Model 2. Estimation results from this model are presented in Table 6. 

In Models 3a and 3b we use ton per axle density variable and ton density variable, 

respectively. Model 3c includes both traffic measures. These results are presented in Table 7.  

 

  



14 
 

Table 5 – Models estimated 

Model Traffic variables Results 

1a Ton densities w.r.t. 12 intervals for tons per axle Appendix, Table 9 

1b Ton densities w.r.t. 12 intervals for tons per axle  

and a train density variable 

Appendix, Table 9 

2a Ton densities w.r.t. 5 intervals for tons per axle Table 6 

2b Ton densities w.r.t. 5 intervals for tons per axle 

and a train density variable 

Table 6 

3a Ton per axle density: equation (1) Table 7 

3b Ton density Table 7 

3c Ton density and ton per axle density: equation (1) Table 7 

 

Before elaborating on the specific results in each model, we note that the wage variable turned 

out to produce estimates against economic theory (negative coefficient, yet non-significant). 

Hence, we exclude this input price variable in our preferred models and rely on the region 

dummies to capture geographical differences in wages. Their time-varying effect will be 

captured by the year dummies.  

In general, the traffic variables in our models are rather slow-moving (sluggish), 

making the fixed effects estimator unhelpful in providing useful estimates. We therefore 

present the estimation results from the random effects estimator even though these may be 

biased due to a correlation between the unobserved track section specific effects and the 

regressors (the Hausman test suggests that we use the fixed effects estimator). Still, it should 

be noted that we control for a large set of infrastructure characteristics at the track section 

level, as well as time-invariant effects that relate to the regional unit the sections belong to. 

Moreover, the estimation results in Model 3 are compared with previous estimates on 

Swedish data on a longer time period (1999-2014), where the fixed effects estimator is used. 

These results are similar. 

Given that the full dataset can be used in Model 3, which also generates plausible 

results for the traffic variables, we only comment briefly on the traffic variables in models 1-2 
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and focus on the complete estimation results from Model 3 in section 5.2, which is our 

preferred model. All estimations are carried out using Stata 12 (StataCorp.2011). 

 

5.1 Estimation results, Model 1 and Model 2  

We first note that Model 1 generates rather strange results. The coefficient for the axle load 

interval [17, 19) is negative and statistically significant, while the coefficients for some of the 

lower axle load intervals are positive and statistically significant. In fact, axle load intervals 

[11, 13), [13, 15) and [15, 17) have the highest estimates; intervals that are also highly 

correlated with train density (see Figure 1). Indeed, these estimates become statistically 

insignificant when we include the train density variable (Model 1b). See Table 9 in appendix. 

The results in Model 1 may indicate that the 299 observations are too few (with too 

low variation) for the purpose of this study. Model 2 includes more observations as the larger 

intervals for the axle load variables create fewer observations with zero values. However, 

even with 665 observations, we get similar results as in Model 1. The coefficient for the axle 

load interval [9, 15) is statistically significant and larger than the estimates for the other 

intervals, but becomes statistically insignificant and slightly negative when we include train 

density in the estimations (Model 2b). 

 

Table 6 – Estimation results, Model 2 (random effects) 

 
Model 2a 

 
Model 2b 

 

 
Coef. Rob. std. Err. Coef. Rob. std. Err. 

Cons. 16.3803*** 0.2316 16.4884*** 0.1866 

Train density - - 0.3134*** 0.0680 

Ton density [0,9) 0.0137 0.0370 0.0274 0.0361 

Ton density [9,15) 0.1105*** 0.0336 -0.0055 0.0335 

Ton density [15,19) 0.0249 0.0230 0.0072 0.0242 

Ton density [19,23) -0.0438 0.0334 -0.0432 0.0318 

Ton density [23,) 0.0052 0.0198 -0.0157 0.0179 

Track_length 0.6316*** 0.0768 0.6445*** 0.0690 

Rail_age 0.1034 0.0806 0.0907 0.0748 
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Qual_ave 0.2810** 0.1136 0.4185*** 0.1045 

Switch_length 0.2259*** 0.0564 0.1950*** 0.0519 

Structures_length 0.0745* 0.0423 0.0473 0.0376 

Max.axle_load_allowed 0.8781* 0.5141 0.7992 0.5226 

Year12 0.1365*** 0.0429 0.1202*** 0.0431 

Year13 0.2511*** 0.0475 0.2405*** 0.0476 

Year14 0.4183*** 0.0594 0.3958*** 0.0573 

Region North -0.0250 0.1936 0.1425 0.1717 

Region Central -0.2743** 0.1326 -0.2157* 0.1179 

Region South -0.3515*** 0.1165 -0.3889*** 0.0964 

Region East -0.2247* 0.1284 -0.2645** 0.1076 

Ctend -0.5630*** 0.1691 -0.5300*** 0.1624 

Mixtend -0.2655** 0.1209 -0.2177* 0.1126 

CtendInd 0.4138* 0.2397 0.2528 0.2039 

No. Obs. 665  665  

Mean VIF 3.40  3.65  
Note: ***, **, *: Significance at the 1%, 5%, 10% level. 

 

5.2 Estimation results, Model 3 

In Model 3, we use the ton per axle density variable and compare the results with the ton 

density variable. The coefficients for ton per axle density are significant and indicate that the 

cost elasticity with respect to tons per axle varies for different traffic levels, as well as with 

different levels of maximum axle loads allowed. The first order coefficient (which is 

evaluated at the sample median) is 0.2377 (p-value = 0.000).  

A non-linear relationship and an interaction with the maximum axle load allowed 

could not be retained in the translog model using ton density as the output variable (Model 3b; 

Chi2=3.36, Prob>chi2=0.305). The cost elasticity with respect to ton density is 0.1765 (p-

value=0.000), which is very close to the results in Odolinski and Nilsson (2015), who use the 

fixed effects estimator on Swedish data during the period 1999-2014. Their estimate is 0.1719 

at the sample mean. In general, our estimates are rather similar to their study. However, our 

estimates may still be somewhat biased due to the random effects estimator. Nevertheless, we 

consider the comparison between the traffic variables in our model estimations rather robust, 
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as the ton density estimate is plausible and close to previous (unbiased) estimates on Swedish 

data. 

 We note that the coefficient for maximum axle load allowed is negative at the sample 

median, indicating that these tracks are less costly to maintain when controlling for other 

factors. This is what one can expect given that these tracks are designed to withstand higher 

loads. This view is corroborated by the estimate for the interaction term between maximum 

axle load and tons per axle density. Specifically, the coefficient is negative and statistically 

significant, which indicates that the cost impact of axle loads is lower when the tracks are 

designed to be more resilient against heavy loads. 

 The estimation results in Models 3a and 3b show that the cost elasticity for ton per 

axle density is higher that the corresponding estimate for ton density (0.2377 and 0.1765, 

respectively). However, as shown in Table 2, the ton per axle measure does not fully capture 

the total amount of tons that has been running on a track section. We therefore include the ton 

density measure in Model 3c, being aware of the rather high correlation coefficient between 

the logarithm of these traffic variables (0.8954). The correlation between these variables is 

reflected by the estimation results in Model 3c, in which the estimate for ton per axle ton 

density drops about 0.04 percentage points, similar to the estimated effect of ton density 

(0.0511). Comparing the estimates for the traffic measures in Models 3a-c, the estimate for 

ton per axle density in Model 3a seems to (partly) capture the effect of ton density. 
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Table 7 - Estimation results, model 3 (random effects) 

 
Model 3a 

 
Model 3b 

 
Model 3c 

 

 
Coef. Rob. std. err. Coef. Rob. std. err. Coef. Rob. std. err. 

Cons. 16.5536*** 0.2497 16.4261*** 0.2411 16.5577*** 0.2471 

Ton_den. - - 0.1765*** 0.0352 0.0511 0.0439 

Ton_per_axle_den. 0.2377*** 0.0402 - - 0.1926*** 0.0585 

Ton_per_axle_den.^2 0.0489 0.0343 - - 0.0451 0.0328 

Ton_per_axle_dens.^3 0.0186 0.0189 - - 0.0172 0.0177 

Max.axle_load_allowed -1.5134* 0.8632 -0.7572 0.7296 -1.5761* 0.8573 

Track_length 0.5683*** 0.0654 0.5466*** 0.0693 0.5626*** 0.0656 

Rail_age 0.1382** 0.0696 0.1171* 0.0695 0.1379** 0.0691 

Qual_ave 0.3489*** 0.0962 0.2799*** 0.0974 0.3570*** 0.0961 

Switch_length 0.1830*** 0.0497 0.2126*** 0.0510 0.1797*** 0.0500 

Structures_length 0.1083*** 0.0359 0.1161*** 0.0419 0.1101*** 0.0362 

Year12 0.1252*** 0.0394 0.1243*** 0.0381 0.1229*** 0.0387 

Year13 0.1974*** 0.0485 0.2552*** 0.0489 0.2078*** 0.0492 

Year14 0.3366*** 0.0513 0.4351*** 0.0494 0.3539*** 0.0540 

Region North -0.2123 0.1786 -0.2383 0.1691 -0.2327 0.1768 

Region Central -0.2781** 0.1181 -0.3039** 0.1375 -0.2936** 0.1201 

Region South -0.4351*** 0.1072 -0.3518*** 0.1106 -0.4340*** 0.1077 

Region East -0.3501*** 0.1165 -0.2684** 0.1178 -0.3564*** 0.1162 

Ton.axle_den.Max.axle_l. -0.7695** 0.3247 - - -0.7332** 0.3361 

Max.axle_load_allowed^2 26.2970*** 8.0867 17.6814*** 6.7808 25.6902*** 8.2035 

Mixtend -0.1654 0.1345 -0.2511* 0.1368 -0.1676 0.1370 

Ctend -0.4146** 0.1680 -0.4735*** 0.1730 -0.4122** 0.1702 

CtendInd 0.1210 0.2259 0.2586 0.2407 0.1226 0.2286 

No. Obs 707  707  707  

Mean VIF 4.02  3.11  4.62  
The variables were divided with the sample median prior to taking logs. The first order coefficients can therefore 

be interpreted as cost elasticities at the sample median.  

Note: ***, **, *: Significance at the 1%, 5%, 10% level. 

 

The coefficients for track length, rail age, length of switches, and track lengths of structures 

(tunnels and bridges) have the expected signs and are statistically significant. Average quality 

class is also positive and significant, indicating that lower line speeds that are associated with 

less strict track geometry requirements are more costly to maintain. 

We find that Region West - which is the baseline in the model - has higher 

maintenance costs compared to the other regions, where Region South has the lowest 

estimate. Furthermore, the coefficient for competitive tendering (Ctend) is negative in all 
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model estimations, where we also include a time-invariant dummy variable that indicate 

which track sections that are tendered at least a full year during 2011-2014. This is in line 

with a difference-in-differences approach (see for example Greene 2012, pp. 155-7). Note that 

we do not have a general post-competitive tendering period (in that case we would include a 

dummy variable for these years). Instead, the year dummy variables control for the general 

time effects that are not to be confounded with the effects of competitive tendering. 

The estimation results in Table 7 indicate a non-linear relationship between tons per 

axle density and maintenance costs. To illustrate this relationship, we estimate the cost 

elasticity (𝛾𝑖𝑡) at the observed levels of output (𝑄𝑖𝑡), using the following equation: 

 

𝛾𝑖𝑡 = 𝛽̂1 + 2 ∙ 𝛽̂2 ln 𝑄𝑖𝑡 + 3 ∙ 𝛽̂3(ln 𝑄𝑖𝑡)2,     (4) 

 

where 𝛽̂1 is the first order coefficient for output, while 𝛽̂2 and 𝛽̂3 are coefficients for the 

squared and cubic terms of output, respectively. The non-linear relationship between ton per 

axle density and maintenance costs from Model 3a is illustrated in Figure 2 below, which 

includes a (normal-based) 95 per cent confidence interval based on standard errors estimated 

with the bootstrap method using 100 replications for each traffic volume in the sample (see 

for example Mooney and Duval 1993 for a thorough treatment of the bootstrapping method).  

As can be seen in equation (4), we exclude the interaction with maximum axle load allowed in 

this calculation, as this variable generates similar curves, yet at different levels. Figure 2 

shows a U-shaped relationship between the cost elasticities and levels of traffic (as measured 

by tons per axle density). The cost impact is quite high for track sections with low levels of 

traffic, and drops dramatically when traffic increases. However, a turning point comes 

quickly, indicating higher cost elasticities for higher levels of traffic, yet at a decreasing rate. 
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Five observations have cost elasticities above 0.8 (which are not included in Figure 2 

below). We re-estimated our model excluding these observations, which produced similar 

results. 

 

 

Figure 2 – Cost elasticity for different levels of ton density per axle, with 95 per 

cent confidence intervals 

 

6.0 Conclusion 

A direct relationship between axle loads and maintenance costs has been estimated in this 

paper, using a top-down (econometric) approach on Swedish data during the period 2011-

2014. The estimation results indicate an increasing relationship between tons per axle density 

and maintenance costs – that is, the proportional increase in maintenance costs, due to a 

proportional increase in tons per axle density, is increasing with traffic levels (as measured by 
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tons per axle density). The corresponding estimate for ton density is somewhat lower and 

turns insignificant (and decreases) when included along the tons per axle variable. 

 Given that the ton per axle measure gives a better representation of the wear and tear 

of the rail infrastructure compared to only using a ton density measure, the estimates in this 

paper can be informative for a vertically separated railway system where track access charges 

are required. The results are an indication of the importance of axle loads (as well as train 

density) with respect to maintenance costs, and more data can prove to be fruitful in the 

future.  First, more observations can provide more robust results. Second, more detailed data 

can also be rewarding. There are for example differences in tons per axle between wagons on 

each train, which is information that was not available in this study. Instead, we are left with 

the average ton per axle for each train. Moreover, we did not have access to differences in 

characteristics between vehicles such as boogie type (which may be correlated with certain 

axle loads), which can also affect the results. 
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Appendix 

Table 8 – Z-scores for differences between correlation coefficients (std. err. in 

parentheses) 

 [1,9) [9,11) [11,13) [13,15) [15,17) [17,19) [19,21) [21,23) 

[9,11) -11.49*** 

(0.0402) 

       

[11,13) -23.64*** 

(0.0501) 

-16.91*** 

(0.0427) 

      

[13,15) -22.70*** 

(0.0533) 

-15.81*** 

(0.0474) 

-0.64 

(0.0436) 

     

[15,17) -8.85*** 

(0.0507) 

0.26 

(0.0491) 

17.02*** 

(0.0431) 

14.39*** 

(0.0530) 

    

[17,19) -7.52*** 

(0.0466) 

2.56*** 

(0.0435) 

17.63*** 

(0.0473) 

17.77*** 

(0.0485) 

2.01** 

(0.0491) 

   

[19,21) -2.23** 

(0.0358) 

11.50*** 

(0.0332) 

24.76*** 

(0.0446) 

21.28*** 

(0.0532) 

7.70*** 

(0.0480) 

6.56*** 

(0.0412) 

  

[21,23) 1.83* 

(0.0364) 

13.00*** 

(0.0406) 

24.66*** 

(0.0507) 

23.71*** 

(0.0539) 

10.29*** 

(0.0501) 

8.81*** 

(0.0473) 

5.23*** 

(0.0280) 

 

[23,) 2.64*** 

(0.0238) 

10.49*** 

(0.0500) 

24.16*** 

(0.0516) 

23.93*** 

(0.0532) 

9.72*** 

(0.0527) 

7.95*** 

(0.0520) 

3.03*** 

(0.0471) 

-0.07 

(0.0488) 

Note: ***, **, *: Significance at the 1%, 5%, 10% level. 
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Table 9 – Estimation results, model 1 (random effects) 

 

Model 1a 

 

Model 1b 

 

 

Coef. Rob. std. Err. Coef. Rob. std. Err. 

Cons. 16.6286*** 0.1757 16.7013*** 0.1597 

Train density - - 0.2731*** 0.0842 

Ton density [0,5) 0.0275 0.0188 0.0323* 0.0185 

Ton density [5,7) 0.0023 0.0190 0.0087 0.0175 

Ton density [7,9) -0.0154 0.0424 -0.0254 0.0395 

Ton density [9,11) -0.0281 0.0383 -0.0212 0.0371 

Ton density [11,13) 0.0613* 0.0350 0.0327 0.0345 

Ton density [13,15) 0.1412*** 0.0349 0.0429 0.0391 

Ton density [15,17) 0.0667** 0.0306 0.0267 0.0291 

Ton density [17,19) -0.0795*** 0.0306 -0.0737** 0.0305 

Ton density [19,21) -0.0361 0.0327 -0.0116 0.0345 

Ton density [21,23) 0.0048 0.0264 -0.0008 0.0252 

Ton density [23,25) 0.0130 0.0164 0.0112 0.0161 

Ton density [25,) -0.0090 0.0207 -0.0067 0.0190 

Track_length 0.5358*** 0.0871 0.5696*** 0.0954 

Rail_age 0.2061*** 0.0703 0.1926*** 0.0646 

Qual_ave 0.2594** 0.1079 0.3492*** 0.1043 

Switch_length 0.2133*** 0.0485 0.1746*** 0.0544 

Structures_length 0.0949* 0.0524 0.0783 0.0491 

Max.axle_load_allowed 0.8458 0.5495 0.8290 0.5675 

Year12 0.0024 0.0559 0.0052 0.0537 

Year13 0.1963*** 0.0659 0.1969*** 0.0630 

Year14 0.4036*** 0.0706 0.4268*** 0.0699 

Region North 0.0342 0.1463 0.1362 0.1539 

Region Central -0.3053** 0.1457 -0.2809* 0.1485 

Region South -0.3163*** 0.1222 -0.3335*** 0.1131 

Region East -0.0985 0.1296 -0.1392 0.1196 

Ctend -0.1078 0.2433 -0.1394 0.2376 

Mixtend -0.0111 0.1711 -0.0300 0.1591 

CtendInd -0.1779 0.2260 -0.2539 0.2230 

No. Obs. 299  299  

Mean VIF 4.19  4.46  

Note: ***, **, *: Significance at the 1%, 5%, 10% level. 


