
This project (MeBeSafe) has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723430.

Measures for Behaving Safely in Traffic Nudging Bicyclists

Partners and funding

MeBeSafe:

Measures for Behaving
Safely in traffic

Duration: 42 Months May 2017 – October 2020

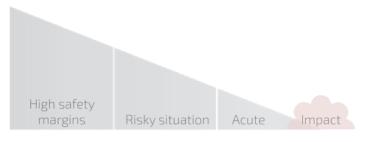
Funding: 7.136.979€ EU HORIZON RIA 2020

Traffic safety approaches

Injury and conflict management

Protection systems, acute warnings and interventions

Risk management


Reducing the frequency of small margin driving situations

Preventing accidents

Traffic behaviour is mainly habitual and we often get into risky situations without even knowing it.

MeBeSafe intends to

- Change habitual traffic behaviour in order to increase safety margins
- Develop & validate behavioural nudging and coaching measures to vehicle drivers and cyclists

High level causation factors

- o Lack of attention
- o Excessive speed
- o Affected mental and/or physical state

Traffic behaviour

Traffic behaviour is largely automated.

It is not effective to appeal to active decision making.

MeBeSafe will change habitual behavior with nudging and coaching.

Nudging

Any aspect of the **choice architecture** that alters people's behaviour in a predictable way **without forbidding any options** or significantly changing their economic incentives.

To count as a mere nudge, the intervention must be **easy to implement** and **cheap to avoid**. Nudges are not mandates. Putting fruit at eye level counts as a nudge. Banning junk food does not.

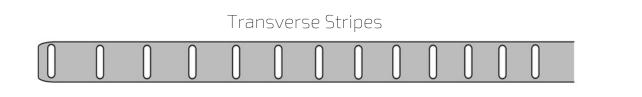
Thaler and Sunstein (2008)

Gothenburg cyclists nudges

The process

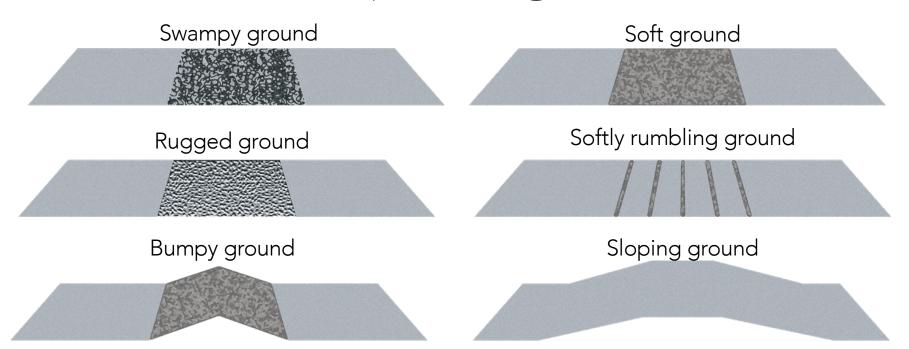
- An iterative design process
 - Theory
 - Quick-and-dirty idea testing
 - Concept development
 - More elaborate tests
 - Concept fine tuning
 - Evaluation

Two tests

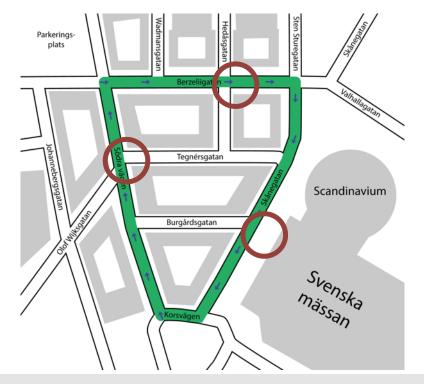

Real-traffic visual nudge test

Experimental haptic nudge test

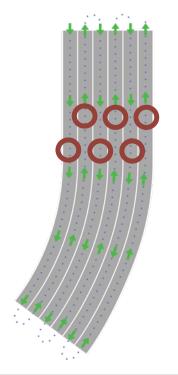
Visual nudges

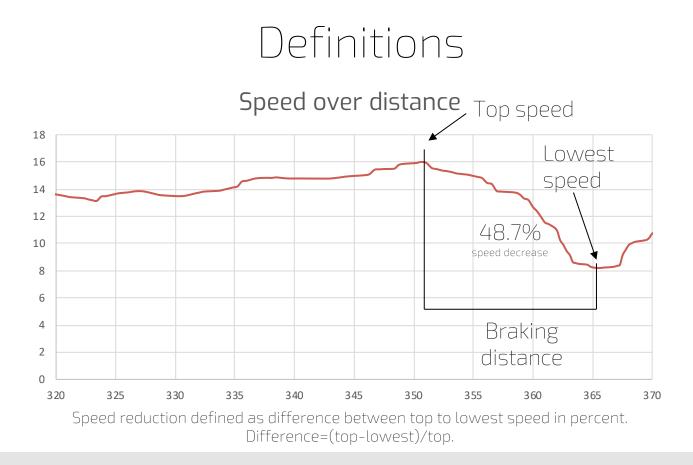

Lane narrowing

Digital Speed Sign


Haptic nudges

Visual test - 93 test persons


800 metre route, 3 stations in intersections where 6 nudges and 1 baseline were tested



Haptic test – 16 test persons

600 metre route, 6 stations where nudges were tested

Visual – large speed reductions

Speed reduction **independent of noticing** the nudges (except for DigiSign)

Speed reduction independent of how much the cyclists claim to slow down in intersections usually

Visual nudges – Speed reduction

on top of baseline reduction (baseline corrected to 0%)

Everybody subjected to the nudges reduced speed

The speed reductions with nudges were **much larger** than speed reductions without nudges present

More apparent nudges reduced speed more.

Haptic – seemingly low speed reductions

Most speed reduction occurs **before nudges**, and that will **wear off** until next exposure

Speed reduction within nudges are often **counteracted** towards the end

Haptic nudges – Speed reduction

potential speed reduction the first time encountered

Speed reductions were very small – much less than for visual nudges

Speed reductions were generally larger for less appreciated nudges

In the long term, the effect will be negligable

Results for slope applies if sloping up before intersection and down after

Modalities of nudges

Haptic

Less effect than visual nudges

Less appreciated than visual nudges

Very large spread in which nudges are appreciated

Nudges with more effect are less appreciated

Nudge with useful effect demands serious rebuilding of roads

Effect very likely to wear off after first encounter

More effect than haptic nudges

Visual

More appreciated than haptic nudges

Very coherent results on appreciation

No clear connection between effect and appreciation

None of the nudges demand especially large efforts to implement

Effect likely to persist over time

Visual nudge types

DigiSigns		Transverse	Narrow
Reduce cyclist speed the most	Most dependant on being seen	Make cyclists most attentive	Lead to straighter trajectories
Speed is affected longer before	Lowest speed is reached earlier before intersection	High comfort/ pleasure rating	Effective although few understood it
		Lowest speed reached close to intersection	

Visual – more or less apparent nudges

Less apparent	More apparent	
Seem to make cyclists more attentive and look more in	Reduces speed more	
intersections	Preferred by cyclists	
Less understood by cyclists (at least for lines on the ground)	Cyclists may brake a larger share of distance between highest and lowest speed	
Cyclists seem to reach lowest speed later	Cyclists seem to reach lowest speed earlier	

Final conclusions

- Visual nudges are more appreciated and have larger potential to affect speed for all types of cyclists
- Visual stripes on ground affect speed on a subconscious level
- Rumble stripes neither reduce speed or are appreciated
- Speed decrease together with longer braking distances could make collisions less likely

Gothenburg cyclists nudges

MeBesar

This project (MeBeSafe) has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723430.

Thank you for your attention!

MeBeSafe

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723430.